The feathers of the Frigate bird are not waterproof, so they cannot swim or dive for their food. If they did, their feathers would become waterlogged, and they couldn't fly. Frigates have very small feet and legs, making them almost helpless on land and sea. If the Frigate did land in the water they would not be able to paddle very far because their feet are only partially webbed.

However, the Frigate is magnificently created to fly. It has very long, slender, pointed wings. Some have been measured up to 7 feet 6 inches (2.3 m). For its size, it has the greatest wingspan of all the birds. Its long forked tail acts like a rudder. By closing and opening their tails like a fan they can skillfully maneuver in the air. In order to fly they need a current of air under their wings. If the Frigate landed on the water, its wings would beat uselessly on the water.

The wings of the Frigate bird were designed to soar and fly. Even on land, those long wings can get in the way, so Frigates nest in tall trees or rocky crags. From their nest, they can throw themselves into the wind, where they can soar for hours at a time.

Another name for the Frigate bird is the Man-0'-War. It gets this name because of its pushy nature. It chases terns and other fishing birds and pesters them until they drop or disgorge fish they have caught. Then the Man-0'-War deftly seizes the falling fish in mid-air. Sometimes it swoops low enough to snatch baby terns from the ground or fish from the surface of the water. It does this without ever landing on the sea. When "flying" fish jump out of the water, they are often caught by Frigates in mid-air!

When we look at the Frigate bird, we see a bird that is "evolutionarily" poorly adapted to sea life, especially when we compare him with other sea birds. Yet by special created design, they are able to catch and eat fish without getting their feathers or even their feet wet! Natural selection does not give us new animals, but weeds out the imperfect mutations, and leaves the best of what God created!
Try these little word teasers. Hint: A. is Three Part Harmony. Can you figure out the others? Answers at end of page.

HARMONY

A.

calm storm

D.

mind matter

C.

ELK CUB

E.

rosy

F.

jack

G.

chohene

H.

green chlorophyll fades away, we begin to see yellow and orange colors that have been in the leaves all along. We just can't see them in the summer, because they are covered up by the large amount of green chlorophyll. The bright reds and purples we see are made only in the fall. The cool nights and sunny days of autumn increases the sugar content of the leaves. A special chemical called “anthocyanin” (which is red or purple) increases with increased sugars in the leaves. A chemical called “tannin” makes some leaves tan or brown as the chlorophyll disappears. Frost and freezing temperatures will stop the coloration process and blacken the leaves. So for a few weeks God uses these processes to put on a spectacular display of fall colors...Love ya. Eugene

Dear Eugene: MY THEORY ON EVOLUTION

Evolution: What is “Evolution”? Is it a fact, Or a lie? That is the question? Scientists have no proof that we evolved from monkeys. For example Nebraska Man. All they found is one tooth. They dug a little deeper and they found another tooth. They dug a little deeper and they found a jawbone. Then they found out they had a Nebraska Pig. So now what do you think about evolution.... THANK YOU (unsigned letter from the Brummitt family of Montrose CO)

Dear Unsigned: So what do I think? I think sometimes a lot is made over nothing. One tooth does not prove evolution (especially when it is a pig’s tooth). Thanks for your thoughts! Love yaEugene

Dear Holly: Amazing! I was just in Gunnison and the leaves were beginning to turn colors and I asked myself that same question. So here is what I discovered....First of all we have to understand what leaves are and what they do. God made leaves to be food factories for plants. Plants use water, carbon dioxide (a gas in the air), and sunlight to make glucose (a kind of sugar). Glucose is used as building materials for growing and as food for energy for the plant. Using “photosynthesis,” a plant is able to use light to turn water and carbon dioxide into glucose. A special chemical called “chlorophyll” makes photosynthesis happen. The green color of plants comes from the chlorophyll, which is green. During the winter when there is not enough water or light for photosynthesis the plants will rest, and live off the food they stored during the summer. In the autumn, with its short days and cool temperatures, plants begin to shut down their food-making factories and the production of chlorophyll stops. As the bright